如何用隔離式柵極驅(qū)動器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動1200 V SiC電源模塊?
發(fā)布時間:2019-12-10 來源:Juan Carlos Rodriguez和Martin Murnane, ADI公司 責(zé)任編輯:wenwei
【導(dǎo)讀】本應(yīng)用筆記展示了ADuM4136 柵極驅(qū)動器的優(yōu)勢,這款單通道器件的輸出驅(qū)動能力高達4 A,最大共模瞬變抗擾度(CMTI)為150 kV/μs,并具有包括去飽和保護的快速故障管理功能。
電動汽車、可再生能源和儲能系統(tǒng)等電源發(fā)展技術(shù)的成功取決于電力轉(zhuǎn)換方案能否有效實施。電力電子轉(zhuǎn)換器的核心包含專用半導(dǎo)體器件和通過柵極驅(qū)動器控制這些新型半導(dǎo)體器件開和關(guān)的策略。
目前最先進的寬帶器件,如碳化硅(SiC)和氮化鎵(GaN)半導(dǎo)體具有更高的性能,如600 V至2000 V的高電壓額定值、低通道阻抗,以及高達MHz范圍的快速切換速度。這些提高了柵極驅(qū)動器的性能要求,例如,,通過去飽和以得到更短的傳輸延遲和改進的短路保護。
本應(yīng)用筆記展示了ADuM4136 柵極驅(qū)動器的優(yōu)勢,這款單通道器件的輸出驅(qū)動能力高達4 A,最大共模瞬變抗擾度(CMTI)為150 kV/μs,并具有包括去飽和保護的快速故障管理功能。
與Stercom Power Solutions GmbH協(xié)作開發(fā),用于SiC功率器件的柵極驅(qū)動單元(GDU)展現(xiàn)了ADuM4136 的性能(參見圖1)。電路板采用雙極性隔離電源供電,其基于使用LT3999 電源驅(qū)動器構(gòu)建的推挽式轉(zhuǎn)換器。此單片式高壓、高頻、DC/DC轉(zhuǎn)換驅(qū)動器包含具有可編程限流功能的1 A雙開關(guān),提供高達1 MHz的同步頻率,具有2.7 V至36 V的寬工作范圍,關(guān)斷電流<1 μA。
該解決方案采用SiC金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)電源模塊(F23MR12W1M1_ B11)進行測試,SiC模塊提供1200 V的漏源擊穿電壓、22.5 mΩ典型通道電阻和100 A脈沖漏電流能力,最大額定柵極源極電壓為−10 V和+20 V。
本應(yīng)用筆記評估了該解決方案生成的死區(qū)時間,并分析研究GDU引入的總傳播輸延遲。通過去飽和檢測,測試了對SiC器件的過載和短路保護功能。
測試結(jié)果表明,該解決方案響應(yīng)快速。
圖1.GDU
測試設(shè)置
用于報告測試的完整設(shè)置如圖2所示。在電源模塊兩端提供高壓直流輸入電源(V1)。在輸入端添加1.2 mF、去耦箔電容組(C1)。輸出級為38 μH電感(L1),在去飽和保護測試過程中可將其連接至電源模塊的高邊或低邊。表1總結(jié)了測試設(shè)置功率器件。
圖2.測試設(shè)置原理圖
表1.測試設(shè)置功率器件
圖4中所示的GDU接收來自脈沖波發(fā)生器的開關(guān)信號。這些信號傳送至死區(qū)時間產(chǎn)生電路,由LT1720超快、雙通道比較器來實現(xiàn),比較器的輸出饋入兩個ADuM4136 器件。ADuM4136 柵極驅(qū)動器向柵極端發(fā)送隔離信號,并從電源模塊中的兩個SiC MOSFET的漏極端接收隔離信號。柵極驅(qū)動器的輸出級由推挽式轉(zhuǎn)換器提供隔離電源,該轉(zhuǎn)換器使用了由外部5 V直流電源供電的LT3999 DC/DC驅(qū)動器。SiC模塊的溫度測量使用了ADuM4190 高精度隔離放大器。ADuM4190 由LT3080 低壓差(LDO)線性穩(wěn)壓器供電。
圖3展示了實驗連接設(shè)置,表2描述了去飽和保護測試中使用的設(shè)備。
表2.測試設(shè)置設(shè)備
圖3.測試設(shè)備連接圖
測試結(jié)果
死區(qū)時間和傳輸延遲
硬件死區(qū)時間由GDU引入,以避免半橋電源模塊中出現(xiàn)短路,這在打開或關(guān)閉高邊和低邊SiC MOSFET時可能會發(fā)生(請參見圖4)。請注意,延遲的信號在本文中表示為。
在傳輸延遲測試中,在底部驅(qū)動器的信號鏈上測量死區(qū)時間,其由GDU 信號的(有效低電平)輸入激發(fā)。死區(qū)時間通過使用電阻電容(RC)濾波器和LT1720 超快比較器生成。圖5至圖8顯示傳輸延遲測試的結(jié)果。表3描述了圖5至圖8所示的信號。
表3.示波器信號描述(低端驅(qū)動器)
當(dāng)輸入信號被拉低時,比較器將其延遲輸出狀態(tài)從高變?yōu)榈?,死區(qū)時間由RC電路確定(~160 ns,參見圖5)。
當(dāng)SiC MOSFET關(guān)斷,且輸入信號被拉高時,與SiC MOSFET開啟時測量的延遲時間相比,延遲時間可以忽略不計(~20 ns),如圖6所示。
開啟和關(guān)斷時在死區(qū)時間生成和VGS_B信號切換后測得的延遲時間如圖7和圖8所示。這些延遲時間比較短暫,分別為66 ns和68 ns,是由ADuM4136。引入的延遲。
開啟時的總傳輸延遲時間(死區(qū)時間加上傳輸延遲)約為226 ns,關(guān)斷時的總傳輸延遲時間約為90 ns。表4總結(jié)了傳輸延遲時間的結(jié)果。
圖4.GDU信號鏈
表4.傳播延遲測試結(jié)果
圖5.死區(qū)時間測量,器件開啟
圖6.死區(qū)時間測量,器件關(guān)斷
圖7.延遲時間測量,器件開啟
圖8.延遲時間測量,器件關(guān)斷
去飽和保護
避免驅(qū)動開關(guān)高壓短路的去飽和保護功能集成在ADuM4136 IC上。
在此應(yīng)用中,每個柵極驅(qū)動器間接監(jiān)控MOSFET的漏極至源極引腳的電壓(VDS),檢查并確認(rèn)其DESAT引腳的電壓(VDESAT)不超過介于8.66 V至9.57 V之間的基準(zhǔn)去飽和電壓電平VDESAT_REF(VDESAT_REF = 9.2 V,典型值)。此外,VDESAT的值取決于MOSFET操作和外部電路:兩個高壓保護二極管和一個齊納二極管(參見表6和原理圖部分)。
VDESAT的值可通過以下等式計算:
VDESAT = VZ + 2 ×VDIODE_DROP + VDS
其中:
VZ是齊納二極管擊穿電壓。
VDIODE_DROP是每個保護二極管的正向壓降。
在關(guān)斷期間,DESAT引腳在內(nèi)部被拉低,未發(fā)生飽和事件。此外,MOSFET電壓(VMOSFET)高,且兩個二極管反向偏置,以保護DESAT引腳。
在接通期間,DESAT引腳在300 ns內(nèi)部消隱時間后釋放,兩個保護二極管正向偏置,齊納二極管出現(xiàn)故障。在這里,VDESAT電壓是否超出VDESAT_REF值取決于VDS的值。
正常工作時,VDS和VDESAT電壓一直很低。當(dāng)高電流流經(jīng)MOSFET時,VDS電壓增大,導(dǎo)致VDESAT電壓電平升至VDESAT_REF以上。
在這種情況下,ADuM4136 柵極驅(qū)動器輸出引腳(VOUT)在200 ns內(nèi)變?yōu)榈碗娖讲⑷ワ柡蚆OSFET,同時生成延遲<2 µs的信號,使柵極驅(qū)動器信號(VGS)立即鎖定。這些信號只能由RESET引腳解鎖。
檢測電壓電平取決于VDS的值,并可通過選擇具有擊穿電壓VZ的合適齊納二極管設(shè)定為任何電平。反過來,可根據(jù)MOSFET制造商數(shù)據(jù)手冊中所述的VDS來估計用于去飽和的MOSFET電流(ID)。
用柵極脈沖對高邊和低邊MOSFET進行了兩次去飽和保護測試。通過選擇不同的齊納二極管,在每次測試中測試了不同的故障電流。測得的電流值如表4所示,假定最大VDESAT_REF = 9.57 V(最大值),標(biāo)稱VDIODE_DROP = 0.6 V。
低邊測試
25°C室溫下,通過在100 V至800 V的范圍內(nèi)改變輸入電壓(V1),進行了低邊去飽和保護測試(參見圖9)。
圖9.低邊去飽和保護測試
圖10至圖17顯示低邊去飽和保護測試的結(jié)果。表5說明了圖10至圖17所示的信號。
表5.示波器信號描述(低邊測試)
在圖16和圖17中,在25°C下對~125 A的電流觸發(fā)了去飽和保護,并且故障狀態(tài)引腳在延遲約1.34 µs后觸發(fā)為低電平。
對電源模塊的高邊進行了類似測試,其中在25°C下對~160 A的電流觸發(fā)了去飽和保護,并在1.32 µs后觸發(fā)故障狀態(tài)引腳為低電平。
低邊和高邊測試的結(jié)果表明,柵極驅(qū)動解決方案可在<2 µs的高速下,能夠上報去飽和檢測的電流值,這個電流值接近設(shè)定的電流值(參見表4)。
表6.去飽和保護測試的計算條件
圖10.低邊測試,V1 = 100 V,無故障
圖11.低邊測試,V1 = 200 V,無故障
圖12.低邊測試,V1 = 300 V,無故障
圖13.低邊測試,V1 = 400 V,無故障
圖14.低邊測試,V1 = 500 V,無故障
圖15.低邊測試,V1 = 600 V,無故障
圖16.低邊測試,V1 = 800 V,檢測到故障
圖17.低邊測試,V1 = 800 V,檢測到故障(放大)
原理圖
圖18至圖20顯示ADuM4136 柵極驅(qū)動器板的原理
圖18.ADuM4136 柵極驅(qū)動板原理圖(初級端)
圖19.ADuM4136 柵極驅(qū)動板原理圖(隔離電源和高邊柵極信號)
圖20.ADuM4136 柵極驅(qū)動板原理圖(隔離電源和低邊柵極信號)
結(jié)論
ADuM4136 柵極驅(qū)動器能夠通過去飽和保護上報短傳輸延遲和快速過流故障。這些優(yōu)勢結(jié)合適當(dāng)?shù)耐獠侩娐吩O(shè)計,可滿足使用SiC和GaN等先進寬禁帶半導(dǎo)體器件應(yīng)用的嚴(yán)格要求。
本應(yīng)用筆記中的測試結(jié)果是全柵極驅(qū)動解決方案在高電壓下驅(qū)動SiC MOSFET模塊的數(shù)據(jù),并通過去飽和保護功能提供超快響應(yīng)和相應(yīng)的故障管理。此柵極驅(qū)動解決方案由LT3999,構(gòu)建的緊湊、低噪聲功率轉(zhuǎn)換器供電,其提供具有適當(dāng)電壓電平的隔離電源以及低關(guān)斷電流和軟啟動功能。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動化和互聯(lián)化的未來
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會:通過數(shù)字統(tǒng)一計劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級軟件:精準(zhǔn)捕獲隱匿射頻信號
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索