【導讀】在本部分中我們將進一步分析抽取濾波,并將其應(yīng)用于第一部分所討論的示例。此外,我們將討論Virtual Eval,該產(chǎn)品在改良的新型軟件仿真工具中融入了ADIsimADC引擎技術(shù)。Virtual Eval將用于驗證仿真結(jié)果與實測數(shù)據(jù)的匹配程度。
在本文第一部分 《數(shù)字下變頻器的發(fā)展和更新——第一部分》 中,我們討論了在更高頻率的RF頻段中進行頻率采樣的行業(yè)趨勢以及數(shù)字下變頻器(DDC)如何支持此類無線電架構(gòu)。文中對AD9680系列產(chǎn)品所含DDC的幾個技術(shù)方面進行了探討。其中一個方面就是,更高的輸入采樣帶寬允許無線電架構(gòu)在更高的RF頻率下直接采樣,并將輸入信號直接轉(zhuǎn)換為基帶。DDC可使RF采樣ADC對此類信號進行數(shù)字化,而無需處理大量的數(shù)據(jù)吞吐量。DDC中的調(diào)諧和抽取濾波機制可以用來調(diào)整輸入頻帶和濾除干擾頻率。
在第一部分中我們分析了一個示例,利用DDC中的NCO和抽取濾波來觀察DDC中頻率折疊和轉(zhuǎn)換效果的影響?,F(xiàn)在我們進一步分析抽取濾波,以及ADC混疊如何影響抽取濾波的有效響應(yīng)。同樣,我們將以AD9680 為例進行討論。我們對抽取濾波器響應(yīng)進行了歸一化,使其便于查看和理解,并且可應(yīng)用于每個速度等級。抽取濾波器響應(yīng)僅與采樣速率成比例。本文的濾波器響應(yīng)圖并沒有確切具體地提供插入損耗與頻率之間的關(guān)系,而是形象地描繪了該濾波器的近似響應(yīng)情況。通過這些示例可以更好地了解抽取濾波器響應(yīng),以便大致了解濾波器通帶和阻帶所處的位置。
如前所述,AD9680具有四個DDC,各含一個NCO,多達四個級聯(lián)的半帶(HB)濾波器(亦稱為抽取濾波器),一個可選性6 dB增益模塊以及一個可選復數(shù)轉(zhuǎn)實數(shù)模塊,如圖1所示。我們曾在第一部分討論過,信號首先通過NCO,使輸入信號音的頻率偏移,然后通過抽取模塊,也可選擇通過增益模塊,以及選擇通過復數(shù)轉(zhuǎn)實數(shù)模塊。
圖1. AD9680中的DDC信號處理模塊。
首先我們將討論在AD9680中使能復數(shù)轉(zhuǎn)實數(shù)模塊時DDC抽取濾波器的情況。這意味著DDC將配置為接受實數(shù)輸入和產(chǎn)生實數(shù)輸出。在AD9680中,復數(shù)轉(zhuǎn)實數(shù)模塊會使輸入頻率自動向上偏移fS/4。圖2所示為HB1濾波器的低通響應(yīng)。這是HB1響應(yīng),顯示了實數(shù)和復數(shù)域響應(yīng)部分。若要了解濾波器的實際運作,首先要觀察濾波器在實數(shù)域和復數(shù)域內(nèi)的基本響應(yīng),從而可以觀察到低通響應(yīng)。HB1濾波器有一個通帶占實數(shù)奈奎斯特區(qū)的38.5%。還有一個阻帶也占實數(shù)奈奎斯特區(qū)的38.5%,其過渡帶占剩余的23%。同樣,在復數(shù)域,通帶和阻帶各占復數(shù)奈奎斯特區(qū)的38.5%(共77%),而過渡帶占剩余的23%。如圖2所示,濾波器是位于實數(shù)域和復數(shù)域之間的一個鏡像。
圖2. HB1濾波器響應(yīng)—實數(shù)域和復數(shù)域響應(yīng)。
現(xiàn)在我們可以觀察到,通過使能復數(shù)轉(zhuǎn)實數(shù)模塊將DDC置為實數(shù)模式時會發(fā)生什么情況。使能復數(shù)轉(zhuǎn)實數(shù)模塊會導致頻域中出現(xiàn)fS/4的偏移。如圖3所示,可看到頻移和產(chǎn)生的濾波器響應(yīng)。注意該濾波器響應(yīng)的實線和虛線。實線和陰影區(qū)表示這是fS/4頻移后新的濾波器響應(yīng)(產(chǎn)生的濾波器響應(yīng)不能跨越奈奎斯特邊界)。虛線用來顯示若未進入奈奎斯特邊界本該存在的濾波器響應(yīng)。
圖3. HB1濾波器響應(yīng)—DDC實數(shù)模式(復數(shù)轉(zhuǎn)實數(shù)模塊使能)。
注意,在圖2和圖3中,HB1濾波器的帶寬保持不變。兩者之間的區(qū)別是fS/4頻移和第一奈奎斯特區(qū)內(nèi)的中心頻率。然而應(yīng)注意,在圖2中,我們將奈奎斯特區(qū)的38.5%用于信號的實數(shù)部分,另38.5%用于信號的復數(shù)部分。在圖3中,復數(shù)轉(zhuǎn)實數(shù)模塊已使能,奈奎斯特區(qū)的77%均用于實數(shù)信號,而復數(shù)域已被丟棄。除了fS/4頻移之外,過濾器響應(yīng)保持不變。還應(yīng)注意,該轉(zhuǎn)換的一個結(jié)果是:抽取率此時等于1。有效采樣速率仍然是fS,但奈奎斯特區(qū)內(nèi)僅有77%的可用帶寬,而不是整個奈奎斯特區(qū)均可用。這意味著,當HB1濾波器和復數(shù)轉(zhuǎn)實數(shù)模塊使能時,抽取率等于1(更多信息請參閱AD9680數(shù)據(jù)手冊)。
下面我們來看看濾波器在不同抽取率(即,使能多個半帶濾波器)的響應(yīng),以及ADC輸入頻率混疊對有效的抽取濾波器響應(yīng)有何影響。圖4中的藍色實線表示HB1的實際頻率響應(yīng)。虛線則表示因ADC混疊效應(yīng)所產(chǎn)生的HB1有效混疊響應(yīng)。由于第二、第三、第四……奈奎斯特區(qū)的輸入頻率實際上混疊到ADC的第一奈奎斯特區(qū),因此HB1濾波器響應(yīng)有效地混疊到這些奈奎斯特區(qū)。例如,一個駐留在3fS/4的信號將混疊到第一奈奎斯特區(qū)的fS/4。HB1濾波器響應(yīng)僅駐留在第一奈奎斯特區(qū),并且是ADC混疊導致了HB1的有效響應(yīng)看起來像是混疊到其他奈奎斯特區(qū),理解這一點非常重要。
圖4. ADC混疊導致的HB1有效濾波器響應(yīng)。
現(xiàn)在我們來討論HB1 + HB2使能的情況。其結(jié)果會使抽取率為2。這里的藍色實線也表示HB1 + HB2濾波器的實際頻率響應(yīng)。濾波器通帶的中心頻率仍是fS/4。HB1 + HB2使能將導致可用帶寬占奈奎斯特區(qū)的38.5%。同樣,請注意ADC的混疊效應(yīng)及其對HB1 + HB2濾波器組合的影響。一個出現(xiàn)在7fS/8的信號將混疊到第一奈奎斯特區(qū)的fS/8。類似的,一個5fS/8的信號將混疊到第一奈奎斯特區(qū)的3fS/8。這些復數(shù)轉(zhuǎn)實數(shù)模塊使能的示例可以從含有HB1 + HB2很方便地擴展到含有HB3和HB4濾波器二者或其中之一。注意,當DDC使能時,HB1濾波器不可旁通,而HB2、HB3和HB4濾波器可選擇使能。
圖5. ADC混疊導致的HB1+HB2有效濾波器響應(yīng)(抽取率=2)。
我們已經(jīng)討論了抽取濾波器使能時的實數(shù)工作模式,現(xiàn)在我們可以探討DDC的復數(shù)工作模式。仍以AD9680為例。與DDC的實數(shù)工作模式類似,這里將展示歸一化的抽取濾波器響應(yīng)。同樣,示例濾波器響應(yīng)圖中沒有確切表明插入損耗與頻率之間的具體關(guān)系,而是形象地描繪了該濾波器的近似響應(yīng)。這樣做是為了便于更好地了解ADC混疊如何影響濾波器響應(yīng)。
在復數(shù)模式中使用DDC時,它配置為具有一個復數(shù)輸出,由實數(shù)和復數(shù)頻域(通常稱為I和Q)構(gòu)成?;仡檲D2可知,HB1濾波器具有低通響應(yīng),通帶為實數(shù)奈奎斯特區(qū)的38.5%。還有一個阻帶也占實數(shù)奈奎斯特區(qū)的38.5%,其過渡帶占剩余的23%。同樣,在復數(shù)域,通帶和阻帶各占復數(shù)奈奎斯特區(qū)的38.5%(共77%),而過渡帶占剩余的23%。
當HB1濾波器使能,在復數(shù)輸出模式下操作DDC時,抽取率等于二,輸出采樣速率為輸入采樣時鐘的二分之一。擴展圖2中的曲線可顯示出圖6所示的ADC混疊的影響。其中的藍色實線表示實際濾波器響應(yīng),藍色虛線則表示因ADC混疊效應(yīng)所產(chǎn)生的濾波器的有效混疊響應(yīng)。7fS/8的輸入信號將混疊到第一奈奎斯特區(qū)的fS/8,使其位于HB1濾波器的通帶內(nèi)。同一信號的復數(shù)鏡像駐留于–7fS/8,并將在復數(shù)域混疊到–fS/8,使其位于復數(shù)域的HB1濾波器通帶內(nèi)。
圖6. ADC混疊導致的HB1有效濾波器響應(yīng)(抽取率=2)—復數(shù)。
接下來,我們將討論HB1 + HB2使能的情況,如圖7所示。其結(jié)果會使得每個I和Q輸出的抽取率為4。這里的藍色實線也表示HB1 +HB2濾波器的實際頻率響應(yīng)。HB1 + HB2濾波器同時使能將導致每個實數(shù)和復數(shù)域中的可用帶寬為抽取奈奎斯特區(qū)的38.5%(fS/4的38.5%,其中fS為輸入采樣時鐘)。請注意ADC的混疊效應(yīng)及其對HB1 + HB2濾波器組合的影響。一個出現(xiàn)在15fS/16的信號將混疊到第一奈奎斯特區(qū)的fS/16。該信號在復數(shù)域的–15fS/16有一個復數(shù)鏡像,并將混疊到復數(shù)域第一奈奎斯特區(qū)的–fS/16。同理,這些示例也可以擴展到HB3和HB4均使能的情況。本文中并未顯示這些內(nèi)容,但根據(jù)圖7所示的HB1 + HB2響應(yīng)很容易推算出來。
圖7. ADC混疊導致的HB1 + HB2有效濾波器響應(yīng)(抽取率=4)—復數(shù)。
看到所有這些抽取濾波器響應(yīng),您的腦海里可能會有這樣的問題:"我們?yōu)槭裁匆槿。?quot;以及"這樣做有什么好處?"不同的應(yīng)用具有不同的要求,而這些要求可以從ADC輸出數(shù)據(jù)的抽取中獲利。其中一個原因是要增大RF頻帶中某段狹窄頻帶上的信噪比。另一個原因是為了使處理帶寬更小,這樣可使JESD204B接口的輸出通道速率降低,從而便于使用低成本的FPGA。通過使用全部四個抽取濾波器,DDC可實現(xiàn)處理增益,并使SNR改善達10 dB。在表1中,我們可以看到當DDC工作于實數(shù)模式和復數(shù)模式時,不同的抽取濾波器選擇所提供的可用帶寬、抽取率、輸出采樣速率和理想SNR改善情況。
表1. DDC濾波器特性(AD9680)
關(guān)于DDC工作模式的討論有助于深入了解AD9680中抽取濾波器的實數(shù)工作模式和復數(shù)工作模式。采用抽取濾波可提供多個好處。DDC可工作于實數(shù)模式或復數(shù)模式,允許用戶根據(jù)特定應(yīng)用的需求采用不同的接收器拓撲。結(jié)合第一部分所述的內(nèi)容,還有助于探討采用AD9680的一個真實示例。該示例將綜合實測數(shù)據(jù)和Virtual Eval中導出的仿真數(shù)據(jù),以便于比較結(jié)果。
在此例中我們將采用在第一部分中曾使用的相同條件。輸入采樣 速率為491.52 MSPS,輸入頻率為150.1 MHz。NCO頻率為155 MHz, 抽取率設(shè)為4(由于NCO分辨率,實際NCO頻率為154.94 MHz)。因 此,輸出采樣速率為122.88 MSPS。由于DDC進行復數(shù)混頻,因此 分析中包含復數(shù)頻域。注意,圖8中添加了抽取濾波器的響應(yīng), 以深紫色曲線表示。
圖8. 信號通過DDC信號處理模塊—抽取濾波。
NCO偏移后的頻譜:
1.基頻從+150.1 MHz下移至–4.94 MHz。
2.基頻鏡像從–150.1 MHz開始偏移,并繞回至+186.48 MHz。
3.二次諧波從191.32 MHz下移至36.38 MHz。
4.三次諧波從+41.22 MHz下移至–113.72 MHz。
2倍抽取后的頻譜:
1.基頻位于–4.94 MHz。
2.基頻鏡像向下轉(zhuǎn)換至–59.28 MHz,并由HB1抽取濾波器衰減。
3.二次諧波位于36.38 MHz。
4.三次諧波由HB1抽取濾波器衰減。
4倍抽取后的頻譜:
1.基頻位于–4.94 MHz。
2.基頻鏡像位于–59.28 MHz,并由HB2抽取濾波器衰減。
3.二次諧波位于-36.38 MHz,并由HB2抽取濾波器衰減。
4.三次諧波經(jīng)過濾波,基本由HB2抽取濾波器完全消除。
AD9680-500的實測結(jié)果如圖9所示?;l位于–4.94 MHz。基頻鏡像位于–59.28 MHz,幅度為–67.112 dBFS,意味著鏡像衰減了大約66 dB。二次諧波位于36.38 MHz,并衰減了大約10至15 dB。三次諧波經(jīng)過充分濾波,實測結(jié)果不高于噪底。
圖9. 信號經(jīng)過DDC后的FFT復數(shù)輸出(NCO = 155 MHz,4倍抽?。?/div>
現(xiàn)在可使用Virtual Eval來觀察仿真結(jié)果與實測結(jié)果的對比情況。首先,從網(wǎng)站上打開該工具,并選擇要仿真的ADC(見圖10)。Virtual Eval工具在ADI網(wǎng)站的Virtual Eval下。Virtual Eval中的AD9680模型含有一項新開發(fā)的功能,允許用戶仿真不同的ADC速度等級。由于此示例使用了AD9680-500,所以該功能很重要。Virtual Eval加載后,首先提示選擇產(chǎn)品類別和產(chǎn)品。注意,Virtual Eval中不僅涵蓋高速ADC,而且包含精密ADC、高速DAC以及集成/專用轉(zhuǎn)換器這些產(chǎn)品。
圖10. Virtual Eval中的產(chǎn)品類別和選型。
從產(chǎn)品列表中選擇AD9680。這將會打開AD9680仿真的主頁。VirtualEval中的AD9680模型還含有一個框圖,詳細介紹了ADC模擬功能和數(shù)字功能的內(nèi)部配置。該框圖與AD9680數(shù)據(jù)手冊中的框圖相同。在此頁面的左側(cè)下拉菜單中選擇所需的速度等級。對于本例,速度等級選擇500 MHz,如圖11所示。
圖11. Virtual Eval中的AD9680速度等級選擇和框圖。
然后,為了執(zhí)行FFT仿真,必須設(shè)定輸入條件(見圖12)?;仡櫼幌?,本例的測試條件包含一個491.52 MHz的時鐘速率和一個150MHz的輸入頻率。DDC使能,NCO頻率設(shè)為155 MHz,ADC輸入設(shè)為Real(實數(shù)),復數(shù)轉(zhuǎn)實數(shù)模塊(C2R)為Disabled(禁用),DDC抽取率設(shè)為Four(4),DDC中的6 dB增益為Enabled(使能)。這意味著DDC將設(shè)為具有實數(shù)輸入信號和復數(shù)輸出信號,并且抽取率為4。DDC中的6 dB增益使能是為了補償DDC中混頻處理所導致的6 dB損耗。Virtual Eval每次只能顯示噪聲或失真其中一種結(jié)果,因此文中列出兩個圖表,分別用來顯示噪聲結(jié)果(圖12)和失真結(jié)果(圖13)。
圖12. Virtual Eval中的AD9680 FFT仿真—噪聲結(jié)果。
圖13. Virtual Eval中的AD9680 FFT仿真—失真結(jié)果。
Virtual Eval中可顯示許多性能參數(shù)。該工具可提供基頻鏡像的位置以及各諧波位置,這對于頻率規(guī)劃非常方便。還允許用戶查看基頻鏡像或任何諧波信號音是否出現(xiàn)在所需的輸出頻譜內(nèi),從而使得頻率規(guī)劃更輕松。Virtual Eval仿真得出SNR值為71.953 dBFS,SFDR為69.165 dBc。但需考慮一下,基頻鏡像通常不會出現(xiàn)在輸出頻譜中,如果我們消除雜散信號,那么SFDR為89.978 dB(若參考的輸入功率是–1 dBFS,則為88.978 dBc)。
圖14. AD9680 FFT測量結(jié)果。
Virtual Eval仿真器在計算SNR時不包括基頻鏡像。請務(wù)必調(diào)整VisualAnalog™中的設(shè)置,忽略測量結(jié)果中的基頻鏡像,以得到正確的SNR。該方法適用于對基頻鏡像不在所需頻帶內(nèi)的情況進行頻率規(guī)劃。SNR的實測結(jié)果為71.602 dBFS,非常接近于Virtual Eval中的仿真結(jié)果71.953 dBFS。與之類似,實測的SFDR為91.831 dBc,非常接近于仿真結(jié)果88.978 dBc。
Virtual Eval能夠準確地預(yù)測硬件行為,表現(xiàn)極為出色。您只需一把舒適的椅子,一杯熱茶或咖啡,即可預(yù)測出器件行為。特別是對于帶有DDC的ADC(如AD9680),Virtual Eval能夠很好地仿真ADC的各種性能(包括鏡像和諧波),便于用戶進行頻率規(guī)劃,并且盡可能將這些干擾信號保持在頻帶外。隨著載波聚合和直接射頻采樣得到越來越多的應(yīng)用,工具箱內(nèi)備有類似于Virtual Eval的工具將會使您的工作得心應(yīng)手。此類工具能夠準確地預(yù)測ADC性能,幫助系統(tǒng)設(shè)計人員為某些應(yīng)用(如通信系統(tǒng)、軍事/航空航天雷達系統(tǒng)以及許多其他類型的應(yīng)用)設(shè)計進行適當?shù)念l率規(guī)劃。建議您充分利用ADI新一代ADC器件的數(shù)字信號處理功能優(yōu)勢。同時建議您使用Virtual Eval來規(guī)劃您的下一個設(shè)計,提前構(gòu)想預(yù)期性能。
推薦閱讀: